Aufgabe 2:
A has the choice A1 or A2, B has the choice B1 or B2; payoffs are given with A/B. It is not known which of the two matrices is selected; the two matrices have equal probabilities of being selected.
Matrix x B1 B2 Matrix y B1 B2
A1 12/6 2/7 A1 10/17 10/15
A2 14/7 4/10 A2 6/10 6/6
A1/B1: 12+10=22/2 = 11
A1/B2: 2+10 = 12/2 = 6
A2/B1: 14+6 = 20/2 = 10
A2/B2: 4+6 = 10/2 = 5
B1/A1: 6+17 = 23/2 = 11,5
B2/A1: 7+15 = 22/2 = 11
B1/A2: 7+10 = 17/2 = 8,5
B2/A2: 10+6 = 16/2 = 8
a) What are the expected payoffs for A and B, if they only know that the two matrices
have equal probabilities of being selected?
--> ohne Information
E(GA) = 12+10 = 22/2 = 11
E(GB) = 6+17 = 23/2 = 11,5
Gesellschaftlicher Wert: VG = E(GA) + E(GB) = 11 + 11,5 = 22,5
b) What are the expected payoffs for A and B, if they will be told which matrix is selected before they make their choice?
--> mit öffentlicher Information
Matrix X: 4/10 (A2/B2); Matrix Y: 10/17 (A1/B1)
E(GA) = 4+10/2 = 7
E(GB) = 10+17/2 = 13,5
Gesellschaftlicher Nutzen: VG = E(GA) + E(GB) = 7 + 13,5 = 20,5 à um 2 gesunken
Intermezzo:
--> A hat vertrauliche (secret) Informationen, B weiß das nicht:
A wählt: Matrix X à 14; Matrix Y à 10 = 14+10 = 24/2 = 12
B muss daher wählen: Matrix X à 7; Matrix Y à 17 = 17+7 = 24/2 = 12
Gesellschaftlicher Nutzen: VG = 24
c) What are the expected payoffs for A and B, if A knows which matrix is selected before he makes his choice? B knows that A will get this information?
--> private Information
Wenn B, B1 wählt: 7+17 = 24/2 = 12
Wenn B aber B2 wählt: 10+15 = 25/2 = 12,5
Also wird B, B2 wählen à E(GB) = 12,5
So muss A, auch B2 wählen à E(GA) = 4+10 = 14/2 = 7
Gesellschaftlicher Nutzen: VG = 19,5
Lesezeichen