fundamentale frage: ordnet ihr die Erwartungdswerte nach Größe für den Median oder nicht?
Druckbare Version
Nein, das kann leider nicht sein, denn du kannst den market return nicht für r bzw. i einsetzen, das wollte ich auch so machen. Hier wird das meiner Meinung nach ganz gut klar: http://www.investopedia.com/articles...#axzz26XeZzUGC
Das Problem an der Aufgabe ist für mich, dass man einfach keine Formel passend verwenden kann. Aus der Dividende und den EPS kannst du nur die Dividend Payout Ratio bilden und die ist ne Sackgasse, mit der kann man nichts anfangen. Wenn man versucht die anderen Formeln umzuformen und einzusetzen, kommt auch immer auf mindestens auf zwei Unbekannte. Damit man bei der Aufgabe etwas rechnen kann, braucht man entweder noch eine Angabe wie Earnings, Nr. of Shares o.ä. ; die CAPM-Angaben bringen hier nichts. Ich schreibe dem Institut mal...
a stimmt auf jedenfall, bei b bin ich mir nicht sicher
c geht meiner Meinung nach so:
Du hast den re des unverschuldeten Unternehmen mit 0,08 und rf mit 0,03 und re mit 0,1. Wichtig ist zu wissen das der re eines unverschuldeten Unternehmen der rwacc eines verschuldeten Unternehmen ist.
Jetzt würde ich das in die Formel re = rf + RP + L*RP einsetzen. Dabei kommt bei mir ein L von 0,4 raus.
Kann das sein? Feedback bitte
die Frage mit der Bayes'schen Entscheidungsregel hatten wir bei der Klausur nicht. Die war wohl für Studierende nach altem Studienplan, also keine Panik :)
ich weiß nicht, wer euch gesagt hat, dass man diese nicht ordnen soll! Natürlich muss man die Zahlen orden und dann den Median hernehmen, und den 1. Trader wird genau so berücksichtigt, (nichts wird weggelassen)
Bei den meisten Bsp. kommts zwar auf das selbe Ergebnis, aber der Beweis ist auf Seite 493 im Buch.... Marktpreis von 9.25.... ungeordnet würde das nicht stimmen, nur wenn man die ergebnisse ordnet:
11 10,5 10,5 10 10 9,5 9,5 9 9 8,5 8,5 8 8 7,5 = Median 9,25
Aber wenn du dir das Beispiel im Buch S. 488 anschaust kommst du auf den Preis von 7,25 nur wenn du die Werte nicht ordnest....
Hallo,
weiß jemand eine Lösung zu folgender Frage:
What are "moving averages" of market prices an what is the information they are expected to deliver?
doch auch im bsp. von 488 ordnet man die zahlen. habs schon weiter oben mal geschrieben dass P nicht immer der Median sein muss. P liegt dort, wo am meisten gehandelt wird. und das ist im Bsp auf seite 488 zwischen 7 und 7,5 (also 7,25). bei 7,25 werden 5 kontrakte gehandelt (da 5 Verkäufer). Beim P von 7,5(=Median) würden hier zwar auch 5 Personen verkaufen, aber nur 4 kaufen. Somit gäbe es nur 4 kontrakte.
Zu der MM Aufgabe von Juli 2012:
a) Aus riskfree und der Risikoprämie weiß man, dass das EK des Unternehmens mit 10% verzinst werden muss. Da derzeit 25€ pro Aktie erwirtschaftet werden, muss eine Aktie 250€ wert sein, so dass 250 *> 0.1 = 25. (Da lag ich mit meinen Äußerungen von gestern falsch...Hätte nicht gedacht, dass man den market return auch als rE nutzen darf!)
b) No exogenous growth --> g=0: S1=Div2/k --> S1=10/0,1=100
c) Capital Structure: Leverage B=0, rEb=0,08 --> rWACC=0,08 Dann einsetzen in: rEa=rF+RP+RP*L , mit rEa=0,1 rF=0,03, RP=0,07 --> L=0 Und das verstehe ich nicht! Logischerweise heben sich auf Grund der Annahmen von Teilaufgabe a) rEa und rf+RP auf, aber L kann in diesem Beispiel doch nicht 0 sein! Wo ist mein Denkfehler? @csak4834 Wie kommst du da auf L=0,4?
d) Ich habe angenommen, dass der im Forum genannte L=0,4 von Aufgabe c) stimmt. Es gilt ROI=rWACC*(E+D). Wir wissen, dass ROIa=ROIb und SHARESa=SHARESb.
ROIa=0,08*(Ea+Da)
ROIb=0,08*Eb
-->0,08*(Ea+Da)=0,08*Eb | / 0,08 --> Ea+Da=Eb
Für E gilt: E=Anzahl Shares*Preis ; für Da gilt: Da=0,4Ea (wegen L=0,4) und für die Anzahl der Shares wie gesagt: SHARESa=SHARESb
--> SHARESa*Pa+0,4*SHARESa*Pa=SHARESa*Pb | / SHARESa --> 1,4Pa=Pb --> Pb=350
Hoffe, es ist nachvollziehbar...würde mich über eine Erklärung zu c) freuen, wie man auf L=0,4 kommt!
RP ist in diesem Fall doch 0,05 und nicht 0,07 oder?
wenn du das einsetzt kommst du auf die 0,4.
zu MM Bsp. vom Juli.
b) der Preis liegt bei 265 in t1. Da steht no EXOGENOUS growth, d.h. aber nicht, dass hier kein g ist.
g ist 0,06
Ja ich stimme Tobi.V zu
ich habe die aufgabe so gelöst:
- EPS = 25 € à Gewinn je Aktie d.h. RoE
rf = 0,03
RPA = 0,07 --> RPA = RP + RP*L --> aus der Formel rE = rf + RP + RP * L
rE = rf + RPA = 0,1
SA,0= RoE/rE = 25/0,10 = 250 €
- Expected Share price under the condition of no exogenous growth!
S1 = Div2 / (r – g) Exogenes Wachstum heißt wohl Wachstum außerhalb des Gordon Growth Modells. Das bedeutet meiner Meinung nicht, dass g = 0
S0 = 250 = Div1 / (r-g) --> nach g aufgelöst --> g = r-Div1/S0
g = 0,1 – (10/250)
g = 0,06 Div2 = Div1 * 1,06 = 10*1,06 = 10,60 €
S1 = 10,60/(0,1-0,06) = 265 €
Als Test, dass g=0,06 stimmen müsste habe ich den Aktienpreis von a.) nochmal berechnet als S0 = 10/(0,1-0,06= 250 €
- What is the Capital Structure (L) of firm A, if rE of an unlevered firm is 0,08?
LA = DA/EA
LB = DB/EB = 0 è DB = 0 EB = 1 d.h. rwacc, B = rE * 1 und rwacc,B = 0,08
MM-Condition: If the law of one price holds, the total costs of capital (rwacc ) must be independent of leverage!
Das heißt dass: rwacc,A = rwacc,B rwacc,A = 0,08 = rE * E + rD * D = rE * xE + rD *(1-xE) wobei xE = Anteil Equity
aufgelöst nach xE = 0,7142 à Equity = 71,42 %
Debt = 1-E = 28,58 %
L = 0,4001680 à L = 0,4
- What is the share price von Firm B?
ROI = 25 = RoI / rwacc = 25 / 0,08 = 312,50 €
Zur Kontrolle: für L=0,4 passt auch die Formel rE = rf + RP + RP * L
Bei RP = 0,05 und L = 0,4 ergibt sich ein rE = 0,03 + 0,05 + 0,05*0,4 = 0,10 (rE von Firma A aus der ersten Aufgabe)
ich hoff des Passt so, sonst weiß ich auch nicht mehr weiter.
Könntest du vielleicht erklären, wie du auf g=0,06 und in weiterer Folge Pt1=265 kommst? Vielleicht ist es auch total offensichtlich, aber ich bin bei den Aufgaben einfach noch nicht so fit. Danke dir, da hilfst du mir wirklich sehr - auch bei den anderen Themen sind deine Antworten echt hilfreich; kurz und knapp aber hilfreich :)
Edit: hat sich wohl erledigt, vielen Dank SWunsch!
Aber deinen Ansatz zur d) Share Price B verstehe ich nicht. Gilt im Falle von L=0: ROI=EPS? Und wie kommst du auf die Formel ROI/rWACC? Vielen Dank!
wenn L = 0 --> haben wir kein Fremdkapital, weil D/E = 0
wenn wir kein Fremdkapital besitzen ist RoI = RoE
und da EPS nix anderes ist als RoE/anzahl an Aktien ist RoI/EPS.
ROI/r(wacc) habe ich genommen, weil auf unseren Folien im PS folgendes stand:
"Lowering total cost of capital (rwacc ) will increase the company's total
value (remember: rwacc is used as a discount factor for future cash ows in many models)."
SV = ROI (als future Cashflow) / r(wacc) als discount factor.
oder (einfacher) Schredeseker Folien S.329
"The value of the firm equals EBIT/WACC" (EBIT = RoI und wenn L = 0, dann ist RoI=RoE)
Hey SWunsch.
Kannst bitte so nett sein und mal für deine Lösung die Zahlen einsetzen. Komm da nämlich (andere auch) nicht auf das Ergebnis.
Das heißt dass: rwacc,A = rwacc,B rwacc,A = 0,08 = rE * E + rD * D = rE * xE + rD *(1-xE) wobei xE = Anteil Equity
aufgelöst nach xE = 0,7142 à Equity = 71,42 %
Debt = 1-E = 28,58 %
L = 0,4001680 à L = 0,4
lg
What is the share price von Firm B?ROI = 25 = RoI / rwacc = 25 / 0,08 = 312,50 €
kannst du mir bitte erklären wie du auf den ROI von 25 kommst?danke
Zur Diskussion mit dem Median bzw. Marktpreis. Tobi V. muss recht haben, P ist nicht immer der Median, sonder der Preis wo die meisten Wertpapiere gehandelt werden:
Herr Schredelseker schrieb mir in einer email dieses:
"der Median ist der Wert, der eine gegebene Menge in genau zwei gleiche Teile teilt: der eine Teil ist größer, der andere ist kleiner. Dabei spielt es keine Rolle, ob Sie die Werte sortieren oder nicht.
1,2,3,4,5,6,7 Median: 4
5,7,2,1,4,3,6 Median: 4"
und wie findet man den wert raus bei dem die meisten wertpapiere gehandelt werden?
wenn du PIL=3 hast dann schätzen die erten 3 Trader natürlich das selbe da musst du gar nichts rechnen sonder nur schauen was du beim dritten Trader für E(V) bekommen hast und das gilt dann auch für die anderen ;)