als erstes stellst du die transformationskurve auf, also x + 2z = 1000 nach x freistellen, dann nach z ableiten und du hast die GRT.
danach bildest du die MRS der beiden Personen und setzt sie mit der GRS gleich. Wenn du das hast dann kannst du entweder nach x1 oder x2 freistellen und das dann in die transformationskurve x=x1 + x2 einsetzen und du bekommst z heraus!
![]()
wie leitet man ln(xa)+ln(ya) ab?
kann mir bitte jemand helfen wie man die Emissions-Aufgabe rechnet. Ich versteh nichtmal wie ich das ansetzen soll. hab schon so viel ausprobiert, aber nichts funktioniert.
Zwei Firmen A und B emittieren im Zuge ihrer Produktion eine umweltschädigende Substanz. Die Grenzkosten der Emissionsvermeidung betragen GKA = xA für Firma A und GKB = 3xB für Firma B. Hierbei bezeichnen xA und xB die jeweils von den Firmen A und B reduzierten Mengen an Emissionen. Ohne staatliche Intervention emittiert jede Firma 100 Einheiten der Substanz. Der Staat möchte die Emissionen von insgesamt 200 Einheiten auf 150 Einheiten reduzieren. Welche der folgenden Aussagen ist richtig?
a) Die vom Staat gewünschte Reduktion der Emissionen verursacht gesamtwirtschaftlich die geringsten Kosten, wenn Firma A die Emissionen von 100 auf 50 Einheiten reduziert.
b) Bei Umsetzung der vom Staat gewünschten Reduktion der Emissionen durch eine effiziente Gebühr je Einheit an Emissionen bezahlt die Firma A in Summe mehr Gebühren als Firma B.
c) Die vom Staat gewünschte Reduktion der Emissionen verursacht gesamtwirtschaftlich die geringsten Kosten, wenn Firma A und Firma B die Emissionen jeweils von 100 auf 75 Einheiten reduzieren.
d) Bei Umsetzung der vom Staat gewünschten Reduktion der Emissionen durch eine optimale Gebührenpolitik beträgt die Gebühr je Einheit an Emissionen 37,5.
e) Keine der übrigen Antworten ist richtig.
kann mir bitte jemand die Lösung sagen
In einer Wirtschaft können die Gütermengen x = 50 und y = 100 auf zwei Haushalte A und B verteilt werden (x
und y sind private Güter). Es gilt xA +xB =50 und yA +yB = 100, wobei xA und yA bzw. xB und yB die auf die Person
A bzw. B entfallenden Mengen der Güter x und y bezeichnen. Die Nutzenfunktionen der Haushalte lauten: UA (xA
, yA ) = ln(xA ) + ln(yA ) und UB (xB , yB ) = 0,5xB +yB . Welche der folgenden Aussagen ist richtig? (Hinweis: die
partielle Ableitung der Funktion ln(x) nach x lautet 1/x.) Welche der folgenden Aussagen ist richtig?
und die Aufgabe 10 d danke im voraus![]()
Geändert von Gülsah (11.09.2013 um 08:07 Uhr)
Lesezeichen